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EXECUTIVE SUMMARY 

Objective, accurate, and fast assessment of a bridge’s structural condition is critical to the timely 

assessment of safety risks. Current practices for bridge condition assessment rely on visual 

observations and manual interpretation of reports and sketches prepared by inspectors in the 

field. Visual observation, manual reporting, and interpretation have several drawbacks, such as 

being labor intensive, subject to personal judgment and experience, and prone to error. 

Terrestrial laser scanners (TLS) are promising sensors for automatically identifying structural 

condition indicators, such as cracks, displacements, and deflected shapes, because they are able 

to provide high coverage and accuracy at long ranges. However, limited research has been 

conducted on employing laser scanners to detect cracks for bridge condition assessment, and the 

research has mainly focused on manual detection and measurement of cracks, displacements, or 

shape deflections from the laser scan point clouds.  

This research project proposed to measure the performance of TLS for the automatic detection of 

cracks for bridge structural condition assessment. Laser scanning is an advanced imaging 

technology that is used to rapidly measure the three-dimensional (3D) coordinates of densely 

scanned points within a scene. The data gathered by a laser scanner are provided in the form of 

point clouds, with color and intensity data often associated with each point within the cloud. 

Point cloud data can be analyzed using computer vision algorithms to detect cracks for the 

condition assessment of reinforced concrete structures. In this research project, adaptive wavelet 

neural network (WNN) algorithms for detecting cracks from laser scan point clouds were 

developed based on the state-of-the-art condition assessment codes and standards. Using the 

proposed method for crack detection would enable automatic and remote assessment of a 

bridge’s condition. This would, in turn, result in reducing the costs associated with infrastructure 

management and improving the overall quality of our infrastructure by enhancing maintenance 

operations. 
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INTRODUCTION 

The majority of bridge condition assessments in the US are conducted by visual inspection, in 

which a printed checklist is filled out by structural engineers or trained inspectors. An inspector 

must correctly identify the type and location of each element being inspected, document its 

distress, manually record this information in the field, and then transcribe that information to the 

bridge evaluation database after arriving back at his/her office. This is a complex and time-

consuming set of responsibilities, which are prone to error. 

Terrestrial laser scanners are promising sensors for documenting the as-built condition of 

infrastructure (Hajian and Brandow 2012), and they have already been utilized by a number of 

state departments of transportation (DOTs) for this purpose in the project planning phase. 

Furthermore, terrestrial laser scanning (TLS) technology has been shown to be effective in 

identifying structural condition indicators, such as cracks, displacements, and deflected shapes 

(Park et al. 2007, Olsen et al. 2009, Werner and Morris 2010, Meral 2011, Wood et al. 2012), 

because they are able to provide high coverage and accuracy at long ranges. However, limited 

research has been conducted on employing laser scanners to detect cracks for bridge condition 

assessment (Chen 2012, Chen et al. 2012, Olsen et al. 2013). 

This research project investigated the performance of TLS for detecting cracks automatically for 

bridge structural condition assessment (Olsen et al. 2009, Anil et al. 2013, Adhikari et al. 2013, 

Mosalam et al. 2013). TLS is an advanced imaging technology that is used to rapidly measure 

the three-dimensional (3D) coordinates of densely scanned points within a scene (Figure 1(a)).  

 

Figure 1. Research vision 

The data gathered by a TLS is provided in the form of 3D point clouds, with color and intensity 

data often associated with each point within the cloud. Point cloud data can be analyzed using 

computer vision algorithms (Figure 1(b)) to detect structural conditions (Figure 1(c)).  

Relevance to MTC Theme and Thematic Thrust Areas 

The Midwest Transportation Center (MTC) theme is Data-Driven Performance Measures for 

Enhanced Infrastructure Condition, Safety, and Project Delivery. The proposed TLS-based 

structural condition assessment method enables automated and remote condition assessment of 
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reinforced concrete structures. The proposed method would (1) enhance infrastructure condition 

by enabling a more efficient and accurate structural condition assessment, (2) improve safety by 

reducing the time spent in the field on manual data collection, and (3) improve project delivery 

by enabling structural condition data to be stored electronically, which would make the data 

much easier to retrieve and to maintain than in a conventional paper-based document 

management system.  
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LITERATURE REVIEW 

Visual inspection is the most conventional and widely used method for crack detection in bridge 

condition assessment. However, many researchers have proposed and developed several contact 

and non-contact techniques for crack detection on concrete and steel surfaces. Contact 

techniques are those techniques that require physical contact between the instrument/tool and the 

entity of interest for the purpose of detecting cracks. Non-contact techniques are those techniques 

that are independent of any physical contact. This section provides a review of previous studies 

on contact and non-contact inspection techniques, terrestrial laser scanning technology, and point 

cloud processing using adaptive wavelet neural networks (WNNs). 

Non-Contact Techniques for Crack Detection 

Several crack detection algorithms to process the data collected using non-contact techniques 

have been proposed and used in the last two decades. A study comparing traditional and neural 

network classifiers was conducted by Kaseko et al. (1994) for detecting defects on asphalt 

concrete pavements. An image-based crack detection algorithm was developed to inspect aircraft 

surfaces (Siegel et al. 1997). To be able to detect cracks, the proposed algorithm detected rivets 

because cracks propagate on rivet edges, and then multi-scale edge detection was used to detect 

the edges of small defects at small scales and the edges of large defects at larger scales. 

Dare et al. (2002) proposed a technique for crack detection based on semi-automatic feature 

extraction. In this study, the authors used bilinear interpolation of pixel values to calculate the 

crack width. The measurements were made in pixels, not in unit length. Ito et al. (2002) proposed 

a crack area quantification technique, which involved an interpolation method based on the total 

brightness of grayscale images. A scale parameter was implemented to convert crack dimensions 

originally obtained in pixels to SI units. This approach was further improved by Yamaguchi and 

Hashimoto (2010), who proposed an edge information and percolation model–based crack 

detection approach.   

Sohn et al. (2005) proposed a system for monitoring crack growth, which focused on detecting 

newly generated cracks with the help of spatiotemporal images. This study did not quantify crack 

width and orientation. Abdel-Qader et al. (2003) compared and analyzed the efficiency of four 

different edge detection techniques for identification of cracks on concrete bridges. The study 

concluded that the Fast Haar Transform (FHT) is the most effective edge detection method for 

crack detection on concrete surfaces when compared to the Fast Fourier Transform (FFT), 

Canny, and Sobel methods.  

Contact Techniques for Crack Detection 

A number of contact techniques have been proposed by several researchers to detect and monitor 

crack development on conductive concrete surfaces. Pour-Ghaz and Weiss (2011) introduced a 

technique to monitor cracks based on the electrical resistance of a conductive thin film applied to 

the surface of a cement material. In this method, the time and location of the crack are measured 
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by monitoring abrupt increases in the resistance of the conductive surface coating. However, 

separate data acquisition channels are required for each component when using conductive 

surface components. Pour-Ghaz and Weiss (2011) solved this problem by developing a 

frequency selective circuit (FSC) in which numerical methods were used to analyze the response 

of the FSC for the fast and synchronized interrogation of the multiple conductive surface 

elements.  

In order to automate the process of structural assessment, especially for concrete, a number of 

sensor-based approaches have been proposed by several researchers. Ouyang et al. (1991) and 

Shah and Choi (1999) developed a crack detection method by capturing stress waves generated 

by cracks in concrete elements. This technique was based on piezoelectric sensors employing 

acoustic emission, which can be categorized under passive stress wave methods. Carino (2004) 

developed pulse-echo and pitch-catch methods, which required using one and two transducers, 

respectively, to categorize cracks on actual concrete elements. This technique can be 

subcategorized under active stress wave methods, which are more accurate for crack detection 

purposes. Overall, contact techniques for crack detection are fairly accurate. However, they 

require employing different sensing tools that increase the overall lifecycle costs of the structure 

under inspection. Moreover, these techniques require a great deal of experience and expertise in 

order to be able to interpret the produced results. The utilization of smart materials has also been 

proposed for crack detection. In particular, a sensing skin has been proposed for crack detection 

and localization in concrete (Kollosche et al. 2011), wood (Laflamme et al. 2013), and steel 

(Kharroub et al. 2015) specimens.  

Terrestrial Laser Scanning Technology 

Terrestrial laser scanning, also known as light detection and ranging (LiDAR), enables the direct 

acquisition of 3D coordinates from the surface of a target object or scene that are visible from the 

laser scanner’s viewpoint (Alba et al. 2011, Vosselman and Maas 2010, Xiong et al. 2013). TLS 

is based on either time-of-flight (TOF) or phase-based technology to collect the range (x, y, z) 

and intensity data of objects in a scene. The two technologies differ in calculating the range, 

while both acquire each range point in the equipment’s spherical coordinate frame by mounting a 

laser on a pan-and-tilt unit that provides the spherical angular coordinates of the point. TOF 

scanners emit a pulse of laser light to the surface of the target object or scene and calculate the 

distance to the surface by recording the round trip time of the laser light pulse. Phase-based 

scanners measure phase shift in a continuously emitted and returned sinusoidal wave. Both types 

of TLS achieve similar point measurement accuracies. They differ in scanning speed and 

maximum scanning range. Typically, phase-based TLS achieves faster data acquisition (up to 

one million points per second), while TOF-based TLS enables collecting data from longer ranges 

(up to a kilometer). 

TLS Implementation in the Architecture, Engineering, Construction, and Facilities Management 

Industry 

Laser scanning technology enables the capturing of comprehensive and very accurate 3D data for 

an entire construction scene using only a few scans (Cheok et al. 2002). Among other 3D sensing 
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technologies, laser scanning is the best adapted technology for capturing the 3D status of 

construction projects and the condition of infrastructure accurately and efficiently. In a study by 

Greaves and Jenkins (2007), it was shown that the 3D laser scanning hardware, software, and 

services market has grown exponentially in the last decade, and the architecture, engineering, 

construction and facilities management (AEC-FM) industry is one of its major customers. This 

shows that owners, decision makers, and contractors are aware of the potential of using this 

technology for capturing the 3D as-built status of construction projects and the condition of 

infrastructure.  

Laser scanners can output extremely high resolution models, but at a much larger file size and 

processing time (Boehler et al. 2003). Despite the remarkable accuracy and benefits, laser 

scanners’ current adoption rate in the AEC-FM industry is still low, mainly because of the data 

acquisition and processing time and data storage issues. Full laser scanning requires a significant 

amount of time. Depending on the size of the site, it can take days for large-scale high-resolution 

shots. Accordingly, the resulting data file sizes are typically very large (e.g., a single high-

resolution scan file size could be a couple of gigabytes or much larger). Therefore, data storage 

and processing are the two biggest factors for the low adoption rates of laser scanners in the 

AEC-FM industry.  

Therefore, there is a need for advanced algorithms that enable automated 3D shape detection 

from low-resolution point clouds during data collection. This would improve project productivity 

as well as safety by reducing the amount of time spent on site. Importantly, the practical 

applications of the developed algorithms to field laser scanners will be straightforward because 

commercially available laser scanners on the market are generally programmable (Trimble 

Navigation Limited 2015). 

Point Cloud Processing using Adaptive Wavelet Neural Networks 

In its raw format, TLS point cloud data contains a significant number of data points that are 

unstructured and densely and non-uniformly distributed (Meng et al. 2013). Therefore, in the 

machine learning community, substantial effort has been put into reconstructing 3D shapes from 

point clouds. Popular reconstruction methods include the utilization of splines (Gálvez and 

Iglesias 2012) and partial differential equations (PDE) (Wang et al. 2012), the latter of which are 

seen as an improvement over splines in terms of the number of parameters. Neural networks 

have also been proposed and demonstrated as superior to PDE-based methods in Barhak and 

Fisher (2001).  

The overarching goal of this research is to detect 3D shapes from point clouds in real-time while 

scanning on site. However, there exist critical challenges in designing a shape reconstruction 

algorithm for real-time adaptive scanning:  

 The algorithm must adapt sequentially to enable adaptive scanning.  

 The representations must be compact to reduce demand on memory. A compact 

representation can also facilitate queries over a large database, which is particularly useful in 

extracting prior information in the case of sequential training. 
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 The number of parameters must remain low to accelerate computational speed. A high 

number of parameters would result in a substantial lag in the parameterization process.  

 The algorithm must be robust with respect to noise in the data, which can be substantial with 

TLS-based technologies.  

Neural networks have been proposed as candidates for providing robust and compact 

representations. In particular, radial basis function (RBF) neural networks have been applied to 

the problem of shape reconstruction (Bellocchio et al. 2013). Compared against traditional types 

of neural networks, they provide a better approximation, better convergence speed, optimality in 

solution, and excellent localization (Suresh et al. 2008). Furthermore, they can be trained more 

quickly when modeling nonlinear representations in the function space (Howlett and Jain 2001). 

Recent work has been published that utilizes sequential RBF networks for reconstructing 

surfaces from point clouds (Meng et al. 2013). A self-organizing mapping (SOM) architecture 

has been used to optimize node placement, and the algorithm provided good accuracy with a 

minimum number of nodes (Kohonen 2001). 

The authors of the present report have developed a sequential adaptive RBF neural network for 

real-time learning of nonlinear dynamics (Laflamme and Connor 2009) and found similar 

conclusions to those of previous studies, in that the network showed better performance with 

respect to traditional neural networks. They also designed WNNs for similar applications in 

Laflamme et al. 2011 and 2012. WNNs are also capable of universal approximation, as shown in 

Zhang and Benveniste (1992). This particular neural network has also been demonstrated as 

capable of learning dynamics on the spot without prior knowledge of the underlying dynamics 

and architecture of the input space.  

The study presented in this project report proposes a novel adaptive WNN-based approach to 

automatically detect concrete cracks from TLS point clouds for bridge structural condition 

assessment. The adaptive WNN is designed to self-organize, self-adapt, and sequentially learn a 

compact reconstruction of the 3D point cloud. The approach was tested on a cracked concrete 

specimen, and it successfully reconstructed 3D laser scan data points as wavelet functions in a 

more compact format, where the concrete crack was easily identified. This is a significant 

improvement over previous TLS-based crack detection methods because this approach does not 

require a priori knowledge about the crack or the 3D shape of the object being scanned. It also 

enables 3D point cloud data to be processed more quickly and cracks to be detected 

automatically. Furthermore, because it is designed to self-organize, self-adapt, and sequentially 

learn a compact reconstruction of the 3D point cloud, it can easily be adapted for real-time 

scanning in the field, which will be investigated in the future using the adaptive WNN approach 

presented in this report. 
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CURRENT BRIDGE INSPECTION PRACTICES 

A number of structural engineers and bridge inspectors from the Nebraska Department of Roads 

(NDOR) and the Iowa DOT were contacted in order to document these agencies’ current bridge 

inspection practices. Semi-structured interviews that were conducted with these authorities 

helped in pinpointing the needs and requirements for improving current inspection methods. The 

main idea was to document major problems and issues faced by the authorities in their bridge 

maintenance and repair operations such as field observations, bridge inspections, and bridge data 

management. The authorities were asked about the general protocol and methodology followed 

for bridge inspection practices (see the Appendix). Moreover, the survey was specifically 

designed to document the visual inspection methodologies carried out by the Iowa DOT and 

NDOR for the detection of cracks on reinforced concrete bridges as well as the methodologies’ 

advantages and limitations. 

Nebraska Department of Roads 

The NDOR Bridge Division follows its bridge evaluation manual for bridge inspections. The 

bridge inspection procedure is initiated by carrying out visual inspection and some 

nondestructive testing protocols, such as ultrasonic testing methods, to evaluate the condition of 

bridges. In the case of concrete bridges, NDOR uses a visual inspection method for the detection 

of cracks and chain dragging and hammers to locate spalled concrete on decks. One National 

Bridge Inspection Standards (NBIS) inspector/load rating engineer at NDOR who was 

interviewed as part of this study stated that the visual inspection method is relatively easy and 

quick. After visually inspecting all the elements of a bridge, the quantities of the areas with 

cracks and the cracks’ severity are measured and documented. However, NDOR has 

acknowledged that the visual inspection method has its own limitations, in that it is a challenging 

task to detect small hairline cracks. Also, due to weather conditions some small cracks may close 

up, which makes it almost impossible to detect them by the naked eye. NDOR carries out bridge 

inspections every 24 months; however, bridges that meet certain criteria may need to be 

inspected more frequently. 

Iowa DOT 

In order to maintain its bridge inventory, the Iowa DOT uses the Structure Inventory and 

Inspection Management System (SIIMS) (Iowa DOT 2014). For the purpose of detecting cracks 

on various elements of a bridge, the Iowa DOT uses field inspection, including visual inspection 

and other nondestructive means of evaluation such as a dye penetrant test, magnetic particle 

testing methods, ultrasonic testing methods, etc. When implementing the visual inspection 

method, critical areas are cleaned prior to inspection and additional lightning sources and 

magnification techniques are employed if required. The inspectors take photographs of the 

cracked elements, and the exact crack conditions are sketched and documented. The process of 

visual inspection for crack detection is typically carried out in a 24-month period (Iowa DOT 

2014).  
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RESEARCH METHODOLOGY 

Adaptive Wavelet Network 

An adaptive WNN was designed to sequentially learn a compact reconstruction of a 3D point 

cloud. The architecture of the WNN is based on a single-layer neural network, as illustrated in 

Figure 2, and consists of ℎ Mexican hat wavelets centered at 𝜇𝑖, with a bandwidth of 𝜎𝑖, where 

each function (or node) 𝜙𝑖 can be written as follows: 

𝜙𝑖(𝜁) =  (1 −
‖𝜁−𝜇‖2

𝜎2
) 𝑒

−
‖𝜁−𝜇‖2

𝜎2       for 𝑖 = 1,2, … , ℎ                                                                     (1) 

The wavelet network maps the 𝑧𝑗 coordinate of point 𝜁𝑗 = [𝑥𝑗 , 𝑦𝑗] using the following function:  

𝑧̃𝑗 = ∑ 𝛾𝑖𝜙𝑖(𝑥𝑗 , 𝑦𝑗)ℎ
𝑖=1  (2) 

where 𝛾𝑖 represents the function weight and the tilde denotes an estimation. 

𝜙𝑖(𝜁) =  (1 −
‖𝜁 − 𝜇‖2

𝜎2
) 𝑒

−
‖𝜁−𝜇‖2

𝜎2       for 𝑖 = 1,2, … , ℎ 

 

Figure 2. Single-layer architecture of the wavelet network 

The network is self-organizing, self-adaptive, and sequential. The self-organizing feature 

consists of the capability to add functions at sparse locations. This is done following Kohonen’s 

Self-Organizing Mapping Theory (Kohonen 2001). The self-adaptive feature consists of adapting 

the network parameters 𝜎 and 𝛾 to learn the compact representation. Lastly, the sequential 
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feature refers to the capability of the network to learn a representation while scanning is 

occurring, in a sequential way, in opposition to a batch process. This sequential capability can be 

used to interact with the 3D scanner in real-time. 

The wavelet network algorithm is described as follows. First, a new point 𝜁𝑗  is queried from the 

scanner, along with its associated 𝑧𝑗. The shortest Euclidean distance is computed between the 

location of the new point 𝜁𝑗  and the center of the existing functions 𝜇𝑖 for 𝑖 = 1,2, … , ℎ. If the 

shortest distance is greater than a user-defined threshold 𝜆, a new function is added at 𝜇ℎ+1 = 𝜁𝑗 , 

and the number of functions increases by 1. Note that this threshold decreases with decreasing 

bandwidth 𝜎𝑖, which allows the creation of denser regions where the network resolution is 

higher. The weight of the new function is taken as 𝛾ℎ+1 = 𝑧𝑗. Second, if no new function is 

added, the estimate 𝑧̃𝑗 is compared against the value 𝑧𝑗, and the network error 𝑒 = 𝑧̃𝑗 − 𝑧𝑗 is 

computed. Third, the network parameters 𝜎𝑖 and 𝛾𝑖 are adapted using the backpropagation 

method (Laflamme et al. 2012): 

𝜉̇ = −Γ𝜉 (
𝛿𝑧

𝛿𝜉
) 𝑒 (3) 

where 𝜉 = [𝜎, 𝛾] and Γ𝜉 are positive constants representing the learning rate of the network. 

Assessment of Adaptive WNN Algorithm  

First, we generated an artificial data set to test the proposed adaptive WNN algorithm. As can be 

seen in Figure 3, a crack appears as an anomaly in the data.  

 

Figure 3. Artificial test data set 

This artificial data set was trained using the adaptive WNN with data points represented with 

nodes, and the results show that the weights (heights) of the nodes in the area where the crack is 

located are larger than those of the nodes located in the flat area.  



10 

In Figure 4, the results clearly show that the crack is located between 20 mm and 30 mm on the 

y-axis.  

 

Figure 4. Normalized results: top view (left) and side view (right) of crack location 

After the first test, we applied the method to a more complex artificial data set containing a 

curved surface as opposed to a flat surface (Figure 5).  

 

Figure 5. Second test data set 

First, large initial bandwidth values were used to do a low-resolution fit (Figure 6), which 

contained most of the half-circle feature and little information about the crack.  
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Figure 6. Low-resolution fit 

Then we subtracted the original data from the low-resolution fit to get the “difference data” 

(Figure 7).  

 

Figure 7. Difference data 

This way, the half-circle feature contained in the “difference data” could be ignored. We then 

applied a high-resolution fit to the “difference data” and were able identify the crack. Figure 8 

shows clearly that the crack is located between 15 and 25 on the y-axis. 
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Figure 8. Crack location 
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DATA COLLECTION  

A test bed consisting of concrete cylinders with different dimensions was set up in the Structural 

Engineering Research Laboratory in the Department of Civil, Construction, and Environmental 

Engineering at Iowa State University. Cracked concrete cylinders of various sizes ranging from 

100 mm to 200 mm in diameter and 100 mm to 300 mm in height, with different crack widths, 

orientations, and depths, were obtained from the laboratory so that the crack detection algorithms 

could be tested to detect cracks of different sizes. The laser scan point cloud data was collected 

using a phase-based laser scanner, the Trimble TX5 (Figure 9).  

 

Figure 9. Laser scanning of a concrete block 

The captured point cloud data was processed using MATLAB, a proprietary programming 

language (Figure 10).  

 

Figure 10. 3D point cloud of a concrete block (plotted in MATLAB) 
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PRELIMARY RESULTS 

After the successful implementation of the adaptive WNN algorithm on the artificial data, the 

algorithm was applied to the real-life data collected from the Structural Engineering Research 

Laboratory. Figure 11 shows the original point cloud data plotted in MATLAB. 

 

Figure 11. Original data plotted in MATLAB 

Figure 12 shows the difference data plotted in MATLAB. 

 

Figure 12. Difference data plotted in MATLAB 
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Figure 13 and Figure 14 show the crack location clearly (red-colored area between 10 and 15 on 

the y-axis).  

 

Figure 13. Top view of difference data 

 

Figure 14. Location of crack 

However, one thing that needs to be paid attention to is the red-colored area at the bottom of the 

images. This occurred due to the fact that the cylinder size was small and the crack was very 

close to the bottom edge. Therefore, the parameters of the WNN nodes located at the bottom 

were affected by the nodes located in the cracked area.  
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EXPERIMENTAL RESULTS  

The adaptive wavelet network was validated on a cracked concrete specimen. The specimen was 

scanned using a Trimble TX5 phase-based TLS on a region limited to 50 by 65 mm
2
 to focus the 

study on the algorithm itself. A total of 8,170 points were generated. The specimen is shown in 

Figure 15, along with a zoom on the limited region (right).  

 

Figure 15. Specimen (scanned region shown by the dashed rectangle, left) and zoom on the 

scanned region (distances in mm, right) 

Figure 15 (right) shows the crack that runs through the region, with a wider region along the first 

35.1 mm from the bottom and a smaller damage geometry along 9.8 mm and after. 

Figure 16 shows a typical fitting result obtained using 59 nodes.  
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Figure 16. (a) Point cloud, (b) compact representation, and (c) overlap of point cloud and 

representation 

The compact representation provides a good fit of the 3D point cloud and includes the damage 

feature. A study was conducted on the accuracy of the representation as a function of the number 

of nodes in the network, in which the parameter 𝜆 was changed while keeping all other network 

parameters constant. The accuracy was measured in terms of the root mean square (RMS) error. 

Figure 17 is a plot of the RMS error as a function of the number of nodes.  
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Figure 17. RMS error and relative computing time versus wavelet network size 

Figure 17 also shows the relative computing time versus the network size. In this case, there is a 

region in which the algorithm provides an optimal representation in term of RMS error. The 

decrease in performance for a higher number of nodes can be attributed to the network 

parameters that become mistuned. In particular, when more nodes are allowed in the network and 

the initial bandwidth is large, one would expect a relatively higher training period to obtain an 

acceptable level of accuracy. The relative computing time changes linearly with the number of 

nodes in the network.  

While the wavelet network provides an accurate representation of the 3D point cloud, it should 

also be capable of extracting key features, such as damage. With this particular example, an 

attempt was made to automatically localize the damage and determine its severity. The strategy 

consisted of identifying regions of wavelets (or nodes) of lower bandwidths, which would 

indicate a region of higher resolution and thus the location of a more complex feature (a crack, in 

this case). Figure 18(a) is a wavelet resolution map, which is obtained by computing the average 

wavelet bandwidth within a region of the representation.  
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Figure 18. (a) Wavelet resolution map showing the average wavelet bandwidths for a 

representation using 59 nodes (the approximate crack region is shown within the black-

dashed region) and (b) identified crack length and width based on wavelet resolutions 

Dark blue areas in Figure 18(a) indicate a high-resolution region, while dark red areas represent 

low-resolution regions. The damage is approximately localized using this strategy. Next, the 

crack length and width were estimated by evaluating the maximum distances along the x- and y-

axes within a group of wavelets of low bandwidth.  

Figure 18(b) is a plot of the computed crack length and width as a function of the number of 

nodes. The approximate crack length is more accurately determined for networks created with a 

large number of nodes, but it yields an acceptable approximation. The estimated crack width 

increases with the increasing number of nodes. This is explained by the presence of a high-

resolution region around coordinate [-20, 20], shown in Figure 18(a), which is perceived as a 

crack. A representation created with a large number of functions may over-fit the 3D point cloud.  
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CONCLUSIONS 

A strategy to sequentially construct a compact representation of a 3D point cloud was presented. 

The representation is wavelet network capable of self-organization, self-adaptation, and 

sequential learning. It can be utilized to transform thousands of 3D point cloud data obtained 

from a TLS or LiDAR into a small set of functions.  

The proposed wavelet network was demonstrated on a cracked cylindrical specimen. It was 

shown that the algorithm was capable of replacing a set of 8,170 3D coordinates into a set of 59 

functions while preserving the key features of the scan data, which included a crack. By looking 

at local regions of high-resolution wavelets, it is possible to localize these features and estimate 

their geometry. While the promise of automatic damage detection has been demonstrated, the 

development of more complex algorithms in future work could lead to a more accurate numerical 

localization and estimation of damage. 
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APPENDIX: SURVEY QUESIONNAIRE  

Questionnaire 

1. What are the current bridge inspection practices followed and what parameters of a bridge 

are taken under inspection using these methods? 

2. What method/s is/are used for detecting cracks on bridges?  

3. What are the advantages and challenges for methods used for bridge inspection in terms of 

accuracy, time, cost and efficiency? 

4. How the method of visual inspection of bridges is carried out specifically for crack detection 

on concrete surfaces? Explain briefly.  

5. What are the advantages and limitations for visual inspection method in terms of accuracy, 

time, cost and efficiency?  

6. How frequently bridge inspection practices are carried out in a year’s time for a given 

bridge? 
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